One-sided reduction to bidiagonal form

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Distribution Independent Algorithm for the Reduction to Tridiagonal Form Using One-Sided Rotations

A scalable algorithm for the reduction to tridiagonal form of symmetric matrices is developed. It uses one-sided rotations instead of similarity transforms. This allows a data distribution independent implementation with low communication volume. Timings on the Fujitsu AP 1000 and VPP 500 show good performance .

متن کامل

One-Sided Interval Trees

We give an alternative treatment and extension of some results of Itoh and Mahmoud on one-sided interval trees. The proofs are based on renewal theory, including a case with mixed multiplicative and additive renewals.

متن کامل

Improved Normal Form for Grammars with One-Sided Contexts

Formal grammars equipped with operators for specifying the form of the context of a substring were recently studied by Barash and Okhotin (“An extension of context-free grammars with one-sided context specifications”, Inform. Comput., 2014), further extending the author’s earlier work on propositional connectives in grammars (A. Okhotin, “Conjunctive grammars”, J. Autom. Lang. Comb., 2001). The...

متن کامل

More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition

Bidiagonal reduction is the preliminary stage for the fastest stable algorithms for computing the singular value decomposition. However, the best error bounds on bidiagonal reduction methods are of the form A + A = UBV T ; kAk 2 " M f(n)kAk 2 where B is bidiagonal, U and V are orthogonal, " M is machine precision, and f(n) is a modestly growing function of the dimensions of A. A Givens-based bi...

متن کامل

Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction

The Golub–Kahan–Lanczos (GKL) bidiagonal reduction generates, by recurrence, the matrix factorization of X ∈ Rm×n,m ≥ n, given by X = U BV T where U ∈ Rm×n is left orthogonal, V ∈ Rn×n is orthogonal, and B ∈ Rn×n is bidiagonal. When the GKL recurrence is implemented in finite precision arithmetic, the columns of U and V tend to lose orthogonality, making a reorthogonalization strategy necessary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00569-9